

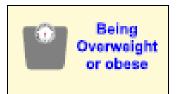
Disclaimer statement

- The following slides are intended for educational purposes only and do not replace independent professional medical judgment
- Statements of facts and opinions expressed are those of the individual presenters and, unless expressly stated to the contrary, are not the opinion or position of the Malaysian Society of Gastroenterology and Hepatology (MSGH)
- Webinar-related materials are not to be used for the promotion of commercial products
- All webinar materials are the sole property of the MSGH and cannot be published, copied, or disseminated without prior approval
- Please acknowledge "Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD): A New Name For An Old Foe http://msgh.org.my" if the slides are shared for educational purposes

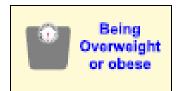
WHO NEEDS FURTHER ATTENTION?

Assessment of liver disease severity and indications for referral

Dr Tan Soek Siam
Senior Consultant Hepatologist
Selayang Hospital

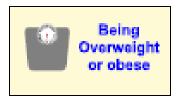


WHO NEEDS FÜRTHER ATTENTION?


Assessment of liver disease severity and indications for referral

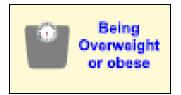
Risks for MAFLD

Risks for MAFLD



Increasing trend

Risks for MAFLD



Increasing trend

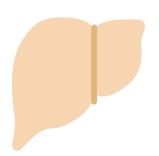
Risks for MAFLD

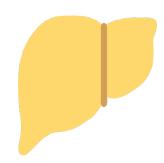
We have

many

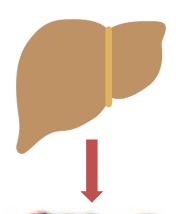
MAFLD

Increasing trend


MAFLD represents a spectrum of liver disease severity


Normal Liver

Steatosis


Steatohepatitis

Cirrhosis

Begins with accumulations of triacyglycerols

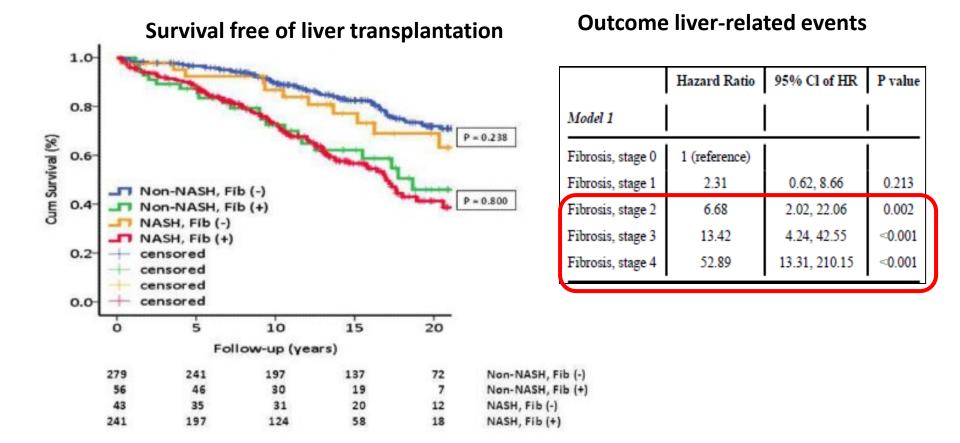
> 5% fatty infiltrations

25% progress from simple steatosis to steatohepatitis

60% can reverse by lifestyle intervention

NASH reversal is uncommon without intervention

Liver injury -> cell death -> fibrosis


Fibrosis progression 1 stage in 7 years

vear

In NAFLD: liver fibrosis, but no other histologic features, associates with long-term outcomes

N=619 NAFLD with liver biopsies (US, Europe, and Thailand) Follow-up 12.6 years (range 0.3–35.1). 193 (33.2%) died or underwent LT

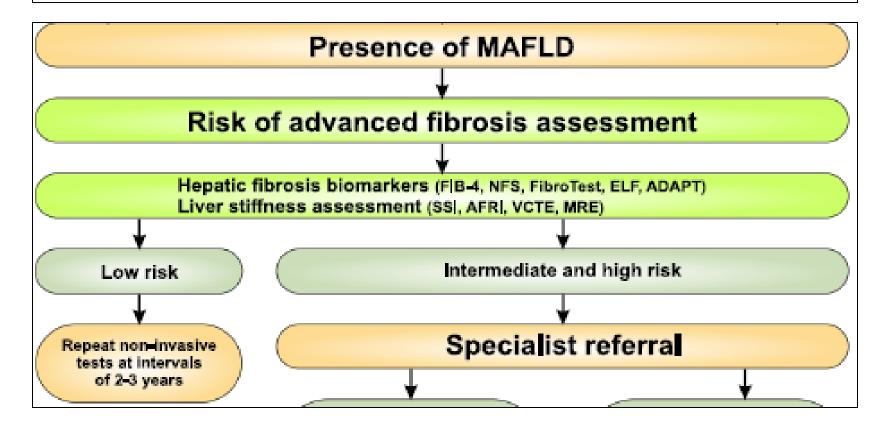

Association btn fibrosis stage and outcomes in NAFLD: systemic review & meta-analysis

13 studies: 4428 NAFLD with liver biopsies, 2875 have NASH

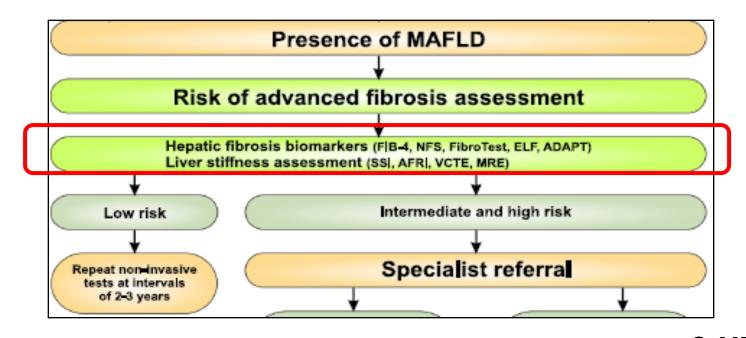
All cause mortality

All cause mortality NAFLD stage 0 vs stage 1 Suby Reading Events. Filed (1965 C) Filed (1

Liver related events


Fibrosis is a key prognostic marker of mortality and liver-related morbidity Increasing fibrosis stage = 5 to 12-fold increase in RR of liver-related events

Assessment of liver disease severity and indications for referral


The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease

Mohammed Eslam¹ · Shiv K. Sarin² · Vincent Wai-Sun Wong³ · Jian-Gao Fan⁴ · Takumi Kawaguchi⁵ · Sang Hoon Ahn⁶ · Ming-Hua Zheng^{7,8} · Gamal Shiha^{9,10} · Yusuf Yilmaz^{11,12} · Rino Gani¹³ · Shahinul Alam¹⁴ · Yock Young Dan¹⁵ · Jia-Horng Kao^{16,17,18,19} · Saeed Hamid²⁰ · Ian Homer Cua²¹ · Wah-Kheong Chan²² · Diana Payawal²³ · Soek-Siam Tan²⁴ · Tawesak Tanwandee²⁵ · Leon A. Adams²⁶ · Manoj Kumar² · Masao Omata^{27,28} · Jacob George¹

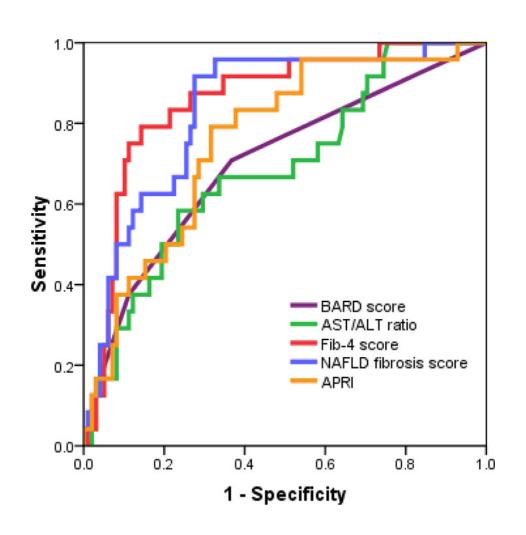
Non invasive tests for liver fibrosis

Blood (simple or specific) and imaging

Simple fibrosis scores

FIB-4 {Age, AST, ALT, platelet count}

NFS {Age, AST, ALT, platelet count, albumin, BMI, IFG/DM, }


Low, intermediate, or high risk for advanced fibrosis cut-offs :

FIB-4 = 1.30 and 2.67

NFS = < -1.455 and > 0.676

Use of simple scoring systems for a public health approach in the management of NAFLD

N=122 adult NAFLD with biopsies , 97 (80%) had NASH from UMMC

AUROC:

FIB-4 score (0.86)

NFS (0.84)

APRI (0.76),

BARD score (0.70)

AST/ALT ratio (0.69)

Use of simple scoring systems for a public health approach in the management of NAFLD

N=122 adult NAFLD with biopsies , 97 (80%) had NASH from UMMC

Advanced fibrosis						
Test	AUROC (95% CI)	Cut-off	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
AST/ALT ratio	0.687 (0.57-0.80)	0.8	37.5	83.7	36.0	84.5
		1	16.7	91.8	33.3	81.8
APRI	0.759 (0.66-0.86)	0.5	83.3	59.2	33.3	93.5
		1	37.5	91.8	52.9	85.7
BARD score	0.702 (0.58-0.82)	2	70.8	63.3	32.1	89.9
FIB-4 score	0.857 (0.78-0.94)	1.3	79.2	84.7	55.9	94.3
		3.25	4.2	98.0	33.3	80.7
NFS	0.836 (0.75-0.92)	-1.455	62.5	77.6	40.5	89.4
		0.676	4.2	99.0	50.0	80.8

FIB-4 and APRI have highest NPV

Use of simple scoring systems for a public health approach in the management of NAFLD

N=122 adult NAFLD with biopsies , 97 (80%) had NASH from UMMC

Advanced fibrosis						
Test	AUROC (95% CI)	Cut-off	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
AST/ALT ratio	0.687 (0.57-0.80)	0.8	37.5	83.7	36.0	84.5
		1	16.7	91.8	33.3	81.8
APRI	0.759 (0.66-0.86)	0.5	83.3	59.2	33.3	93.5
		1	37.5	91.8	52.9	85.7
BARD score	0.702 (0.58-0.82)	2	70.8	63.3	32.1	89.9
FIB-4 score	0.857 (0.78-0.94)	1.3	79.2	84.7	55.9	94.3
		3.25	4.2	98.0	33.3	80.7
NFS	0.836 (0.75-0.92)	-1.455	62.5	77.6	40.5	89.4
		0.676	4.2	99.0	50.0	80.8

FIB-4 and APRI have highest NPV

Table 3 Number of patients avoiding liver biopsy				
Test	Cut-off	Patients avoiding referral	False negative result	
AST/ALT ratio	0.8	99/122 (81%)	15 (15%)	
APRI	0.5	62/122 (51%)	4 (6%)	
BARD score	2	69/122 (57%)	7 (10%)	
FIB-4 score	1.3	88/122 (72%)	5 (6%)	
FIB-4 score NFS	-1.455	85/122 (70%)	9 (11%)	

Non invasive tests to detect advanced fibrosis in NAFLD

TABLE 2. DIAGNOSTIC THRESHOLDS, AUROC VALUES, SENSITIVITIES, SPECIFICITIES, PPV, AND NPV OF TESTING MODALITIES FOR DETECTING AF IN NAFLD

Tests	Cutoffs for AF	AUROC, Mean (95% CI, if Available)	Sensitivity, Mean % (Range, if Available)	Specificity, Mean % (Range, if Available)	PPV, Mean % (Range, if Available)	NPV, Mean % (Range, if Available)
NFS	0.67-0.67	0.78 (0.75-0.81)	43.1 (8.3-100)	88.4 (25.0-100)	66.9 (26.0-100)	88.5 (78.6-100)
APRI	0.54-0.98	0.75 (0.72-0.77)	68.6 (61.0-76.2)	72.7 (59.4-86)	61.4 (46.9-76.2)	77.6 (59.4-94.0)
FIB-4	1.24-1.45	0.80 (0.77-0.84)	77.8 (63.0-90.0	71.2 (55.5-88.0	40.3 (24.0-50.6	92.7 (88.0-98.0)
BARD	2	0.73 (0.71-0.75)	75.2 (41.7-100)	61.6 (32.5-88.9)	38.3 (15.0-79.8)	88.7 (49.6-100)
ELF	0.3576	0.90 (0.84-0.96)	80	90	71	94
FibroTest (FibroSURE)	0.30	0.81	95.0	71.0	31.0	99.0
VCTE (FibroScan, M Probe)	7.6-8	0.87 (0.83-0.90)	87.0 (65.0-100)	77.2 (65.9-90.2)	43.4 (27.0-52.0)	95.5 (86.0-100)
VCTE (FibroScan, XL Probe)	5./-9.3	0.80 (0./8-0.94)	/5.3 (5/.0-91.0)	/4.0 (54.0-90.0)	58.7 (45.0-71.0)	88.7 (84.0-93.0)
MRE	3.62-4.8	0.93 (0.90-0.97)	85.7 (74.5-92.2)	98.0 (86.9-93.3)	71.0 (67.9-74.5)	93.4 (81.0-98.1)
2D-3D SWE	3.02-10.6	0.91 (0.82-1.00)	89.9 (88.2-91.5)	91.8 (90.0-94.0)	88.2 (83.3-93.1)	93.4 (92.6-94.2)

FIBROSCAN measures liver elasticity

9th to 11th

intercostal space

Controlled Attenuation Parameter (CAP)

Uses US with vibration controlled elastography to measure degree of US attenuation due to hepatic fat. Can detect milder cases

Measurement zone at a distance from edges of liver

YES

Individual data meta-analysis: CAP optimal cut-offs 248 (237-261) for S0 and 268 (257-284) for S1

(Karlas et al JHep 2016)

~a cylinder 1 cm wide and 4 cm long, b/n 5 mm and 65 mm below skin surface"

Median in kPa, IQR

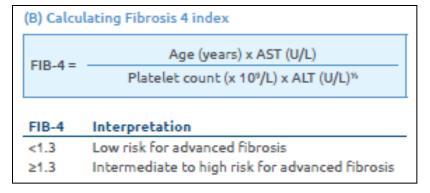
Sequential NIT more accurately measured severity of NAFLD than single or simultaneous tests

NIT -> 2 diagnostic thresholds -> a grey zone where dx remained undetermined

Chose the algorithm best suited to the availability of resources locally

Algorithm	Diagnostic	Sensitivity	Specificity	NPV	PPV
	accuracy				
NFS-VCTE	88.5	83.1	92.1	89.2	87.3
FIB4-VCTE	90.7	84.7	94.7	90.4	91.3
FM-VCTE	88.5	83.1	92.1	89.2	87.3
NFS-FMVCTE	85.6	83.1	87.3	88.7	81.1
FIB4-FMVCTE	88.8	86.3	90.5	91.0	85.6
FM-FMVCTE	87.2	84.7	88.9	89.8	83.3
VCTE-FMVCTE	89.8	85.5	92.6	90.7	88.3
FMVCTE	91.1	90.3	91.5	93.5	87.5

CLINICAL PRACTICE GUIDELINES


MANAGEMENT OF TYPE 2 DIABETES MELLITUS

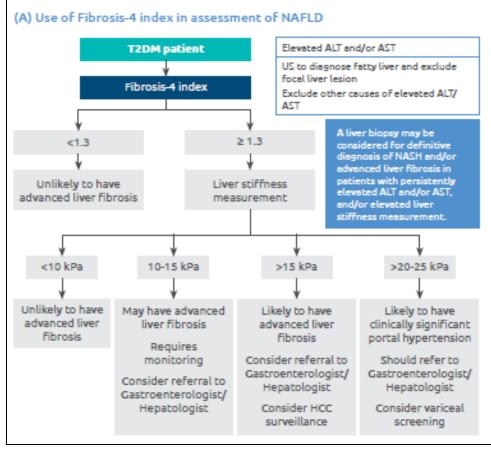
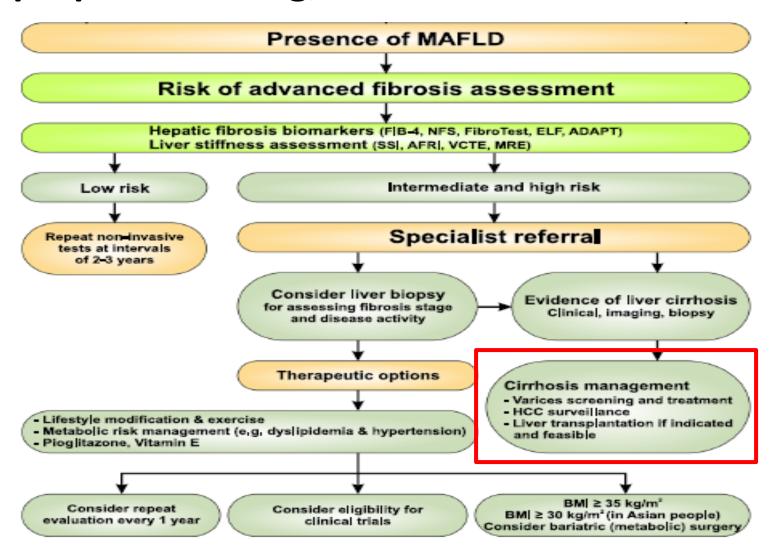
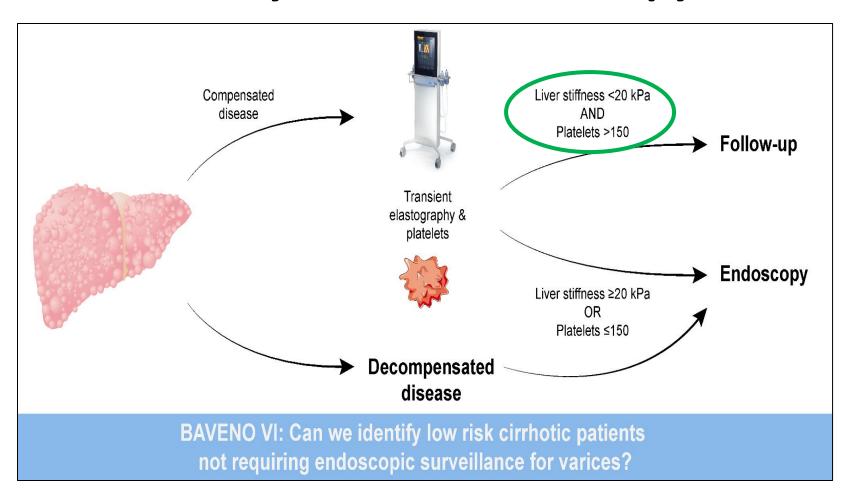

(6th Edition)

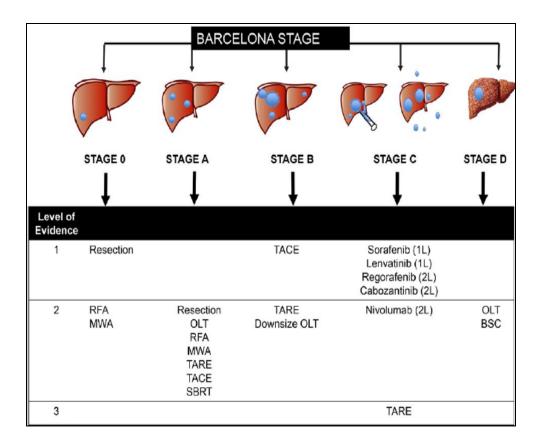
Table 3-1: Detailed assessment of a newly diagnosed patient with T2DM


Co-morbidities	 Non-alcoholic fatty liver disease (NAFLD) Cognitive impairment/dementia Obstructive sleep apnoea (OSA) Pancreatitis Periodontal disease Low testosterone/hypogonadism in men Cancers
----------------	--

Non-invasive fibrosis score, such as fibrosis-4 index (refer to Appendix 9), may be used to risk stratify patients with T2DM and NAFLD



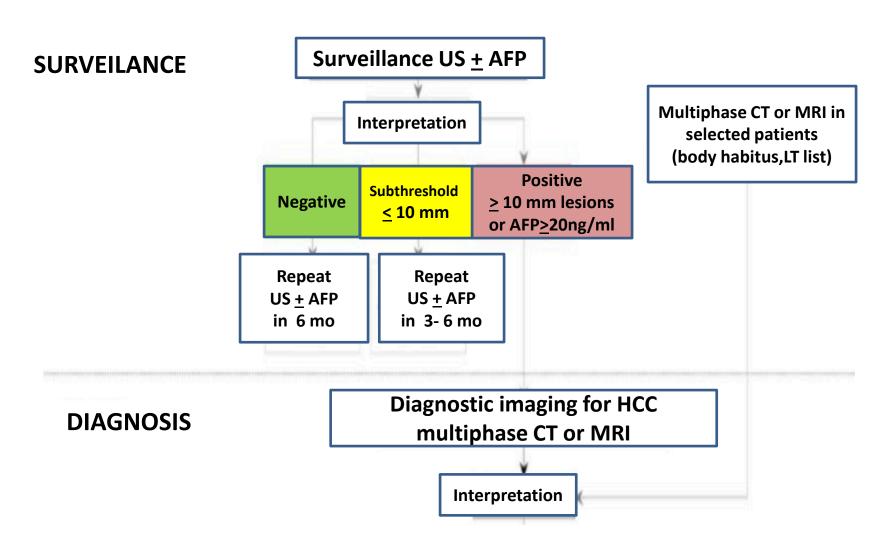
Stratifying liver disease severity also allows appropriate testing, treatment and surveillance


Low, intermediate, or high risk for advanced fibrosis cutoffs:

Baveno VI correctly identified 98% who can safely avoid an endoscopy

de Franchis R J Hepatol. 2015;63:743–52; JB Maurice et al. J Hep 2016 65,5:899-905

HCC surveillance -> early detection increase chance of curative treatment



Estimated annual incidence of HCC among NASH cirrhosis: 0.5-2.6%

(surveillance benefit is unclear when incidence of HCC < 1.5%/year)

Marrero et al Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance AASLD, Huang et al Nat Reviews Gastro Hepato 2020

HCC surveillance

Take to clinic messages

- MAFLD is a common liver disease with a spectrum of severity
- Liver disease progression is dependent on its fibrosis
- FIB-4 is a useful tool to assess for liver fibrosis in primary care setting.
 - FIB-4 < 1.3 -> unlikely to have advanced liver fibrosis
 - FIB-4 \geq 1.3 requires referral for further evaluations

54 % of global deaths due to cirrhosis 73 % of global deaths due to liver cancer occurred in the APAC region.

WHAT IS IT?

MAFLD is the build up of extra fat in the liver that is caused by metabolic dysfunction.

If not treated, the liver of about 1 in 5 people with MAFLD can develop scarring,

People who are at risk

Diabetics

Being inactive

unhealthy diet

40 and 60

Common in both sexes

Symptoms

Typically, there are no symptoms of MAFLD, if they occur, they include:

Tiredness and fatigue

Nausea

Diagnosis

If you have a risk factor, ask your doctor to check for MAFLD, which can now be easily diagnosed,

Presence of liver fat

Overweight or obesity

circumference

Trig ycerides

Inflammation

Management

Diet control

Lose 7-10% of excess body weight

Regular exercise

Avoid smoking and alcohol

diabetes

To learn more about MAFLD visit the APASL website: http://apasl.info/

